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Introductory Remarks 
 
An unprecedented rapid development of software for various technological applications is taking place, largely based on 
cognition science and pattern recognition, during the last few years. And even more so many claims have been put forward by 
various software applications all designated as being Artificial Intelligence (AI) developments, quite many based on Science of 
Neural Networks. Though, since the artificial neuron of McCullock and Pitts (1943) via Hopfield’s neurons (1984) to Hagen and 
co-authors (Oklahoma State University, 2012) neural designs and to Kasabov spiking-neurons ‘neucube’ (2014) and evolving 
connectionist systems (2003), Science of Neural Networks has undergone developments beyond any predictions that have been 
put forward in due course. Rightly so Hagen and Co-authors begin their book with this very first sentence: “As your read these 
words you are using a complex biological neural network. You have a highly interconnected set of some 1011 neurons to facilitate 
reading, breathing, motion and thinking. Each of your biological neurons, a rich assembly of tissue and chemistry, has the 
complexity, if not the speed of microprocessor. Some of your neural structure was with you at birth. Other parts have been 
established by experience.” – the quotation ends. There is no step further indicated into the other side of the complexity of 
neuronal and neural networks spectrum. Yet, on the other side of this spectrum Science of Neurophysiology (Gayton and Hall; 
2006) yielded insights [2], [12], [39] converging closer and closer to Science of Systems Biology [9] based approach to brain’s 
living complex neuronal network. Those appear to be rather involved concepts and ideas on the crossroad with Kolmogorov’s 
representation superposition and Hilbert’s Thirteen Problem, which appeared to yield emergence of certain delicate subtle issues 
(Sprecher; 2017). This paper gives one perception of these issues and a revised insight into the foundations of past developments, 
possibly by re-thinking the realm of recurrent artificial neural networks which possess time-varying delays within the setting of 
recent new stability results (Yan et al., 2015; 2016) to which the authors have been involved. Furthermore, it attempts to combine 
those two spectrum-ends in a cybernetic convolution thus giving new prospect for innovative findings with novel AI potential for 
applications. 
 
 
A Background Motivation: Complex Biological versus Artificial Brains  
 
On the other hand, recently deceased genius Stephen W. Hawking, in his 2014 arXive article on conservation of information and 
estimation of time for black holes [19], argued that we are facing the century of complexity in the scientific studies and its proper 
mathematical capturing that is soundly grounded on physics [1], [15], [16], [19-25], [33]. Before his passing Hawking also 
warned on considerable danger from abuse of AI-technologies, which is imminent if their underlying human background and 
drive are neglected. Earlier this year, in a wider societal prospect, the AI danger was pointed out in [25], [32], [34] as well.  But 
the main issue here seems to be the interference, interaction, and interplay of energy, matter and information within the complex 



 

networks and systems such as the human brain is [2], [12], [37] in the first place. Thus the complexity of human brain’s network 
systemic integrity structure and integrated functioning is getting an open question of the knowledge quest, which seems a never 
ending story. Moreover, Hawking’s warning emphasized how far reaching were the discoveries by David O. Hebb (1949) on 
learning organization of behaviour [17] thus also John J. Hopfield’s dynamic artificial neural networks  (1982, 1984),  physically 
on sound foundations with rigorous mathematical proofs based on Lyapunov stability theory, the only universal stability theory.  
 
The heart of each of these discoveries was built up around the idea of recurrent network structure of neurons within the 
functionality of which human cortex retains centrality role hence human mind too. The computational functionality of recurrent 
neural networks, nonetheless, implies the operating steady-state equilibrium is reached fast and first [2], [7], [45-47]. Recently, in 
[11] Forinto, Zalesky and Bullmore (2016) have proposed a rather innovative treatise of the fundamentals of brain network 
analysis approach. It appeared, the main issues evolve among the interference, interaction, and interplay of energy, matter and 
information within the complex networks such as the human brain [11] appears to be. It has been generally adopted to view the 
healthy human neronal system for each of its life-physiology functions as a specific three-stage dynamic system with a certain 
internal, but outer acting, feedback with capacity of receiving stimuli (external and internal ones) and responding by relevant 
reaction as appropriate [10]. In turn, it seem more than natural that further progress can be achieved by observing in parallel the 
cybernetic phenomena of physiology functioning living neurons and computational cybernetics phenomena in complex networks 
systems. Functionally, the beating heart of each of these model systems is built by a recurrent network structure of neurons 
nonetheless.  
 
 
On Controlled Creation Complex Biological Brains and Their Applications [43] 
 
The above discussed observations, along with recent findings [35], [40-42] on controlled creation of robot cultured-neuron 
controllers (Warwick, 2016; Warwick et al., 2010, 2011) and on capturing the symbiotic functionality of neuron-glia cells 
(Dimirovski et al., 2017), a symbiotic co-existence of neural and glia cells within the same cell-compound [9],  has given 
considerably incentives to re-visit both certain fundamental findings in neurophysiology in conjunction with Hopfield and other 
dynamic neural networks. It is in this way, albeit making use of the existing knowledge, it is believed this paper given new 
cybernetic insights into both the neuron level and the recurrent neural network level [8].  
 

(a)    (b)  
Figure 1 In Fig. 1(a) a MEA unit is depicted, showing the 30 m electrodes which lead to the electrode column–row arrangement, where a) depicts its physics, b) 

shows electrode arrays in the centre of the MEA seen under an optical microscope, while c) shows MEA at x40 magnification (also showing neuronal cells in 
close proximity to an electrode with visible extensions and inter-connections). In the Fig. 1 (b), there is depicted the whole mobile robotic system [43]. 

 
The multi-electrode array enables voltage fluctuations in the culture (relative to a reference ground electrode outside the network) 
to be recorded in real-time at 59 sites out of 64 in an ‘8x8’ array (Figure 1 a). This allows for the detection of neuronal action 
potentials within a 100 micro-m radius (or more) around an individual electrode. By using spike sorting algorithms [12], it is then 
possible to separate the firings of multiple individual neurons, or small groups of neurons, as monitored on a single electrode. As 
a result, multi-electrode recordings across the culture permit a picture of the global activity of the entire neuronal network to be 
formed. It is possible to electrically stimulate via any of the electrodes to induce focussed neural activity. The multi-electrode 
array therefore forms a functional and non-destructive bi-directional interface to the cultured neurons. Electrically-evoked 
responses and spontaneous activity in the culture (neuronal network) are coupled to the robot architecture, and thence on to the 



 

physical robot, via a machine learning interface, which maps the features of interest to specific actuator commands. It is important 
to realise that the overall system employed in this experiment has been designed based on a closed-loop, modular architecture. As 
neuronal networks exhibit spatiotemporal patterns with millisecond precision, processing of these signals necessitates a very rapid 
response from neural-physiological recording and robot control systems. In recent years the study of neuronal cultures has been 
greatly facilitated by commercially available planar MEA systems. These consist of a glass specimen chamber lined with an 8x8 
array of electrodes as shown in Fig. 1 a)It is just such one of these MEAs that we have employed in cultured-neuronal controller 
of a mobile robot system.. A standard MEA (Figure 1a) measures 49 mm x 49 mm x 1 mm and its electrodes provide a 
bidirectional link between the culture and the rest of the system. The associated data acquisition hardware includes a head-stage 
(MEA connecting interface), 60 channel amplifier (1200x gain; 10-3200Hz band-pass filter), stimulus generator and PC data 
acquisition card. 
 
Nowadays, it is well understood that among 100 billion neurons and 1000 trillion synapse connections of human cortex’s natural 
neural network (NNN), its essentially neuronal network possessing nonlinear dynamics may well have also billions of neurons 
possessing local feedbacks and featuring delays. These facts shed new light on the important relevance of recurrent dynamic 
networks as the fundamental cybernetic category where fundamental computational mathematical categories (Sprecher, 2016) 
meet the fundamental systemic categories (Dimirovski et al., 1977) within the feasible operating steady-state equilibrium, at 
which the proper functioning of artificial neural networks (ANN) is guaranteed. However, this implies not only recurrent neural 
networks but also the phenomena of time delays units with nonlinear dynamics with regard to functionally operational steady-
state equilibrium (Hopefield, 1982,1984), albeit also having malfunctioning potential, which reflects the life functionalities of 
human cortex. These facts shed new light on the important relevance of both in recurrent neural networks (RNN) with nonlinear 
artificial neurons (AN) possessing time-varying delays of signal propagations within the RNN. For, these may affect considerably 
the functionality of operating steady-state equilibrium and cause potential malfunctioning, which appear to mimic life 
functionalities of human cortex. Thus, the computational functionality of all ANN including the RNN implies that they are 
guaranteed to first and very fast reach the operating steady-state equilibrium. These findings emphasised the importance of 
functional stability of such cybernetic category as recurrent neuronal-systemic structures are (Dimirovski, 2016, 2017). It has 
been shown into our recent articles (Yan et al., 2015; 2016) that a new insight and solutions to such a fundamental problem are 
feasible via employing special Lyapunov-Krasovskii functional when using Lyapunov stability theory to explore delay-dependent 
conditions for guaranteed fast-reaching the steady-state equilibrium. It has been proved recently the maximum bound on delays 
plays crucial role recurrent artificial neuronal networks provided each individual neuron retains its functional stability 
(Dimirovski and co-authors, 2017). This aspect has been further explored there via a kind of parallelism synergy to artificial and 
living neurons.  
 

A More Comprehensive RANN with Nonlinear Neurons and Varying Time Delays [45] 

     Consider now the following class of models for recurrent artificial neural networks with time-varying delays 

( ) ( ) ( ( )) ( ( ( )))z t Cz t Af z t Bf z t h t J      ,                                                       (1) 

along with the bound conditions observed. Other symbols denote: 1( ) [ ( ),..., ( )]T n
nz t z t z t   is a real-valued n-vector of the state 

variables associated with the individual neurons; ( )f z   1 1[ ( ),..., ( )]T n
n nf z f z   is n-vector of the neuron activation functions; 

1[ ,..., ]T n
nJ J J   is the bias constant vector; 1{ ,..., } n n

nC diag c c    and ,A B  are the constant matrices of appropriate 

dimensions completing the description of this class of RANN. The delay ( )h t  is described by a time-varying continuous function 

possessing the specific properties C1 and C2; see {45, 46]. Also, the activation functions ( ( )),  1,...,i if z t i n , are continuous, 

bounded, and satisfy the respective inequality conditions. For the stability analysis of the neural networks (1), firstly the 
equilibrium point *z  is shifted to origin * ,x z z   * *( ) ( ) ( )g x f x z f z   . Then RANN model (9) can be converted into 

( ) ( ) ( ( )) ( ( ( )))x t Cx t Ag x t Bg x t h t                                                                (2) 

where: 1( ) [ ( ),..., ( )]T n
nx t x t x t   is the state vector of transformed system model ( ( ))g x t  1 1[ ( ( )),..., ( ( ))]T

n ng x t g x t  with 
* *( ( )) ( ( ) ) ( )j j j j j j jg x t f x t z f z    and satisfying (0) 0jg  ( 1, ..., )j n . Functions ( ) ( 1,..., )ig i n   now satisfy the following 

bound conditions: 
( ) ( )

, , ,  ,  1,..., .i i
i i

g u g v
k k u v u v i n

u v
 
    


                                        (3) 

The following inequality 
( )

0,  1,..., .i
i i

g u
k k u i n

u
     ,                                                     (4) 



 

then holds if value 0v   appears in (3). Thus the asymptotic stability of the operating equilibrium of considered RANN (9) 
coincides with the asymptotic stability of system (10).  
 
 RANN Stability Theorem. For a given positive scalar Mh , any scalars l

Dh  and u
Dh  with condition C1, diagonal matrices mK , 

MK , network system (1) is asymptotically stable, if there exist positive definite matrices 5 5 ,n nP   6 6 ,n nQ   6 6 ,n nR   
5 5 ,n nN   3 3 ,n nZ   ,n nM   1 2{ , , , } 0i i i niD diag d d d   ( 1, ,6)i    1 2{ , , , } 0i i i niT diag t t t    ( 1,2,3),i   and any matrix 
3 3 ,n nW   along with  matrices ( , 1,2)n n

ijS i j   and matrix   having appropriate dimensions, such that the following 

LMIs are computationally feasible for (0, )Mh h  and  for ( , )l u
D Dh h h  

( ) ( , )( ) {( ) ( ) }
0,

*

T T Th h Sym h          
 

 


                                     (5) 

0   , 0                                                                     (6) 

where 1 2( , ) ( ) ( ) ( ) ( ( )) ( )Mh h h h t h h h t h             , 0 1 2
10 10 10( ) ( ) ( ( ))Mh h t h h t        , and the other matrices are 

defined in [45, 46], by means of the set of equations, with   representing the right orthogonal complement of  .  Thus, 
original RANN has a stable operating equilibrium state.  
 
 

 
 

Figure 2 A Biomedical Engineering Visionary: Upgrading human intellectual capacity  by employing electronic cheeps of bran implants 

 
It is important to note that if and only if the comparative knowledge and understanding of both brain’s natural neuron al network 
and the artificial neuronal network with respect to both healthy physiological as well as healthy mental functioning, then perhaps 
the science-fiction dream about enhancing our intellectual capacity by means of brain implants (Fig. 2; from IEEE Spectrum – 
The Human OS Alert, 15 November 2017) may be pursued [8], [41].  
 

Instead of Concluding Remarks [7, 8] 

 
The proposed talk is aimed at an elaborate presentation of those novel findings and some modification extension of existing 
models. In general, time-varying delays in the cortex may occur due to the cognition circumstances. If bounded time-delays take 
place the behavior performance appears less conservative as Lyapunov-Krasovskii delay-dependent and -independent stability 
criteria have proven. Thus, the maximum delay bound is an important index for understanding the underlying impact on 
functionality at both single-neuron local level and the level of recurrent artificial neural network (RANN) globally. Significant 
research efforts have been devoted to the reduction of conservatism of the delay-dependent stability criteria for the time-delay 
RANN. These findings emphasised the functional stability of such a bio-cybernetic category as recurrent neuronal-systemic 
structures capturing essential phenomena in living natural neuronal networks such as the ones in living brains. It the recent 
articles [45-46] there has been derived a novel insight as well as new solutions to such a fundamental problem are found (see Yan 
et al., 2015, 2016) via Krasovskii’s extension of Lyapunov stability theory (Krasovskii, 1968) in consistence with LaSalle’s 
invariance principle (LaSalle, 1967).  
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